Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Phytother Res ; 37(3): 1115-1135, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2283713

ABSTRACT

Caffeic acid phenethyl ester (CAPE), a main active component of propolis and a flavonoid, is one of the natural products that has attracted attention in recent years. CAPE, which has many properties such as anti-cancer, anti-inflammatory, antioxidant, antibacterial and anti-fungal, has shown many pharmacological potentials, including protective effects on multiple organs. Interestingly, molecular docking studies showed the possibility of binding of CAPE with replication enzyme. In addition, it was seen that in order to increase the binding security of the replication enzyme and CAPE, modifications can be made at three sites on the CAPE molecule, which leads to the possibility of the compound working more powerfully and usefully to prevent the proliferation of cancer cells and reduce its rate. Also, it was found that CAPE has an inhibitory effect against the main protease enzyme and may be effective in the treatment of SARS-CoV-2. This review covers in detail the importance of CAPE in alternative medicine, its pharmacological value, its potential as a cancer anti-proliferative agent, its dual role in radioprotection and radiosensitization, and its use against coronavirus disease 2019 (COVID-19).


Subject(s)
COVID-19 , Phenylethyl Alcohol , Humans , Molecular Docking Simulation , SARS-CoV-2 , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/metabolism , Phenylethyl Alcohol/pharmacology , Caffeic Acids/chemistry , Anti-Inflammatory Agents/pharmacology , Free Radicals
2.
Infection, Epidemiology and Microbiology ; 8(3):259-276, 2022.
Article in English | Scopus | ID: covidwho-2207019

ABSTRACT

Aims: A short sequence of viral protein/ peptide could be used as a potential vaccine to treat coronavirus. Considering all variants of concern (VOC), designing a peptide vaccine for severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) is a challenging task for scientists. Materials & Methods: In this study, an epitope-containing vaccine peptide in nonstructural protein 4 (nsp4) of SARS-CoV-2 was predicted. Using a modified method for both B and T cell epitope prediction (verified by molecular docking studies), linear B and T cell epitopes of nsp4 protein were predicted. Predicted epitopes were analyzed with population coverage calculation and epitope conservancy analysis. Findings: The short peptide sequence74QRGGSYTNDKA84 was selected as B-cell epitope by considering the scores of surface accessibility, hydrophilicity, and beta turn for each amino acid residue. Similarly, the peptide sequences 359 FLAHIQWMV367 and359FLAHIQWVMFTPLV373 were predicted as T cell epitopes for MHC-I and MHC-II molecules. These two potential epitopes could favor HLA-A*02:01 and HLA-DRB*01:01 as MHC allelic proteins with the lowest IC50 values, respectively. No amino acid mutations were observed in GISAID (global initiative on sharing all influenza data) database for alpha, beta, gamma, and delta variants of concerns. Among seven amino acid point mutations in nsp4 protein of omicron variant, none were present in the peptide sequences of the predicted epitopes. Conclusion: Short peptide sequences could be predicted as vaccines to prevent infections caused by coronavirus variants of concerns. © 2022, TMU Press.

3.
Journal of Molecular Structure ; 1275, 2023.
Article in English | Web of Science | ID: covidwho-2181708

ABSTRACT

A novel Schiff base (SB) ligand, abbreviated as HDMPM, resulted from the condensation of 2-amino-4 -phenyl-5-methyl thiazole and 4-(diethylamino)salicyaldehyde, and its metal complexes with [Co(II), Cu(II), Ni(II), and Zn(II)] ions in high yield were formed. The physico-chemical techniques such as elemental analysis, molar conductance, IR, 1 H and 13 C NMR, mass spectroscopy, and electronic absorption studies were utilized to characterize the synthesized compounds. The studied compounds were examined for their possible anticancer activity against a number of human cancerous cell lines, including A549 lung carcinoma, HepG2 liver cancer, HCT116 colorectal cancer, and MCF-7 breast cancer cell lines, with dox-orubicin serving as the standard. The study revealed that Zn(II) complex showed significant activity to inhibit growth of HepG2, MCF7, A549, and HCT116 cell lines by a factor of 88, 70, 75, and 70, respec-tively, when compared to untreated. In addition, the reported compounds were optimized by employing Gaussian16 program package with B3LYP functional incorporating dispersion with two different basis sets (LanL2DZ and 6-31G(d,p)). Moreover, Autodock Vina software was used to assess the biological effective-ness of the studied compounds against SARS-CoV-2 Omicron variant (PDB ID: 7T9K).(c) 2022 Elsevier B.V. All rights reserved.

4.
Mini Rev Med Chem ; 22(14): 1847-1875, 2022.
Article in English | MEDLINE | ID: covidwho-2029879

ABSTRACT

Widely consumed worldwide, Nigella sativa (NS) is a medicinal herb commonly used in various alternative medicine systems, such as Unani and Tibb, Ayurveda, and Siddha. Recommended for regular use in Tibb-e-Nabwi (Prophetic Medicine), NS is considered one of the most notable forms of healing medicine in Islamic literature. Thymoquinone (TQ), the main component of the essential oil of NS, has been reported to have many properties, such as antioxidant, anti-inflammatory, antiviral, and antineoplastic. Its chemical structure indicates antiviral potential against many viruses, including the hepatitis C virus, human immunodeficiency virus, and other coronavirus diseases. Interestingly, molecular docking studies have demonstrated that TQ can potentially inhibit the development of the coronavirus disease 2019 (COVID-19) by binding to the receptor site on the transmembrane serine protease 2 (the activator enzyme that attaches the virus to the cell). In addition, TQ has been shown to be effective against cancer cells due to its inhibitory effect by binding to the different regions of MDM2, according to the proposed molecular docking study. Detailed in this review is the origin of TQ, its significance in alternative medicine, pharmacological value, potential as a cancer antiproliferative agent, use against the coronavirus disease 2019 (COVID-19) and for treatment of other diseases.


Subject(s)
COVID-19 Drug Treatment , Nigella sativa , Antiviral Agents/pharmacology , Benzoquinones , Humans , Molecular Docking Simulation , Nigella sativa/chemistry , Oxidative Stress
5.
ChemistrySelect ; 7(29): e202201504, 2022 Aug 05.
Article in English | MEDLINE | ID: covidwho-1966112

ABSTRACT

Three new compounds of amidophosphoric acid esters with a [OCH2C(CH3)2CH2O]P(O)[X] segment (where X=cyclopentylamido (1), 2-aminopyridinyl (2) and pyrrolidinyl (3)) were synthesized and studied using FT-IR and 31P/13C/1H NMR spectroscopies and single-crystal X-ray diffraction analysis. The compounds crystallize in the triclinic space groups P 1 ‾ for 1 and 3 and in the orthorhombic space group Pca21 for 2, where the asymmetric unit consists of three symmetrically-independent molecules for 1 and one molecule for 2 and 3. The intermolecular interactions and supramolecular assemblies are assessed by Hirshfeld surface analysis and enrichment ratios. The results reveal that the substituent effect plays an important role in directing the supramolecular structures. The presence of the aromatic substituent aminopyridine in 2 providing the C-H…π interactions leads to a larger variety in interactions including H…H, H…O/O…H, H…C/C…H and H…N/N…H contacts, whereas the packings of the compounds 1 and 3 bearing aliphatic substituents only include H…H and H…O/O…H contacts. The enrichment ratios affirm the importance of O…H/H…O contacts reflecting the hydrogen bond N-H…O interactions to be the enriched contacts. Compounds 1-3 were also investigated along with five similar reported structures with a [OCH2C(CH3)2CH2O]P(O) segment for their inhibitory behavior against SARS-CoV-2. The molecular docking results illustrate that the presence of the aromatic amido substituent versus the aliphatic type provides a more favorable condition for their biological activities.

6.
Turk J Chem ; 45(3): 704-718, 2021.
Article in English | MEDLINE | ID: covidwho-1328158

ABSTRACT

In 2020, the world tried to combat the corona virus (COVID-19) pandemic. A proven treatment method specific to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is still not found. In this study, seven new antiviral compounds were designed for COVID-19 treatment. The ability of these compounds to inhibit COVID-19's RNA processing was calculated by the molecular docking study. It has been observed that the compounds can have high binding affinities especially against NSP12 (between -9.06 and -8.00 kcal/mol). The molecular dynamics simulation of NSP12-ZG 7 complex proved the stability of interaction. The synthesis of two most active molecules was performed by one-pot reaction and characterized by FT-IR, 1H-NMR, 13C-NMR, and mass spectroscopy. The compounds presented with their synthesis are inhibitory core structures against SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL